

Quality Issues – Construction & Projectmanagement

Ground Mounted System Design

Dr.-Ing. Cedrik Zapfe

13TH/14TH December, Mumbai, India

© Dr. Zapfe GmbH 2011

Overview of topics:

- 1. Introduction
- 2. Load evaluation
- 3. Structural Design

- 4. Decision criteria for a substructure selection
- 5. Foundation concepts
- 6. Mounting progress of different foundation concepts
- 7. Summary

1. Introduction Design Criteria Design/Sustainability Safety Cost optimization Material utilization **Material effort** Material selection **Production procedure** System selection **Durability Design calculations** Logistics Recycling **Construction details** Mounting time Joints/fixations focus Dr. Zapfe GmbH Ground Mounted System Design © Dr. Zapfe GmbH 2011 Ingenieurbüro

2. Load actions according to Indian Standard IS 875

Wind loads: IS 875 Part 3 **Design wind speed** $V_z = V_b \cdot k_1 \cdot k_2 \cdot k_3 \cdot k_4$

Probability factor k₁ **Terrain roughness an height** \mathbf{k}_2 **Topography factor** \mathbf{k}_3 **Importance factor** k4 wind pressure $p_{z} = 0.6 \cdot V_{z}^{2}$ design wind pressure $p_d = K_d \cdot K_a \cdot K_c \cdot p_z$ Wind directionality factor K_d 1,0 Ka Area averaging factor **Kombination factor** K

Load actions according to Indian Standard IS 875

Class of Structure	Mean Probable design life of structure in years	k₁ factor for Basic Wind Speed (m/s) of					
	-	33	39	44	47	50	55
All general buildings and structures	50	1.0	1.0	1.0	1.0	1.0	1.0
Temporary sheds, structures such as those used during construction operations (for example, formwork and false work), structures during construction stages, and boundary walls	5	0.82	0.76	0.73	0.71	0.70	0.67
Buildings and structures presenting a low degree of hazard to life and property in the event of failure, such as isolated towers in wooded areas, farm buildings other than residential buildings, etc.	25	0.94	0.92	0.91	0.90	0.90	0.89
Important buildings and structures such as hospitals, communication buildings, towers and power plant structures	100	1.05	1.06	1.07	1.07	1.08	1.08

Risk coefficients k₁

Wind speed according to terrain roughness

Terrain categories

Increasing wind loads in case of isolated hills and ridges

Figure A.1 — Illustration of increase of wind velocities over orography

Increasing wind loads in case of changig topology (isolated hills and ridges)

 k_3

- 1,30 for structures of post cyclone importance
 - 1,15 for industrial buildings
 - 1,00 for all other structures

k₄

Aerodynamic characteristics

Pressure field if a vertical flow impacts the screen

Pressure field (qualitative)

Source: Final report 0327229 A, patronized by the Federal Ministry of Economy and Technology

© Dr. Zapfe GmbH 2011

Pressure- and Force coefficients (IS 875 part 3)

ROOF ANGLE (DECREES)	SOLIDITY RATIO	MAXIMUM (LA	RCEST + VE) AND COEFFIC	Minimum (Larges ients		
		Overali Coefficients	Local Coefficients			$-c_{p}$
						t+cp h
0		+0·2	+0.2	+1.8	+1·1	
5		+0.4	+0.8	+2-1	+1.3	•
10	All values of	+0.2	+1.5	+2.4	+1.6	
15	¢	+0•7	+1.4	+2.2	+1 ·8	
20		+0.8	+1.2	+2.9	+2.1	
25		• +1 •0	+2· 0	+3.1	+2•3	
3 0		+1:2	+2.5	+3•2	+2.4	
	¢= 0	-0.2	-0.6	-1.3	-1.4	
0	$\phi = 1$	-1.0	-1-2	-1.8	-1.9	
	<u></u>	-0.7	- 1.1	-1.7	-1.8	
5	$\phi = 1$	-1-1	-1.6	-2.2	-2.3	
	φ=0	-0.9	-1.2	—	-2.1	
10	φ=1	-1.3	-2-1	2 .6	-2.7	
·	¢= 0	-1.1	-1.8	-2.4	-2.2	Empty, free-standing canopy (φ =0)
15	φ=1	-1.4	-2:3	2 ·9	-3 .0	
	\$= 0	-1.3	-2.2	-2 ·8	-2.9	
2 0	¢=1	-1.2	—2· 6	-3.1	-3.5	
	\$= 0	-1.6	-2 *6	-3.5	-3.5	
25	φ = 1	-1.2	-2· 8	-3.2	-3.2	
	¢=0	-1.8	-3.0	-3 ·8	-3.6	
30	$\phi = 1$	-1 .8	-3 ·0	-3 ·8	—3 •6	
Note – For mono	opitch canopies the	centre of pressure	should be taken to	o act at 0.3 W from	the windward	Canopy blocked to the downwind eaves by stored goods (φ=1)

3. Structural Design for PV Systems

Load Combinations

LC 1: 1,2·DL ± 1,5·WL

LC 2: $1,2 \cdot (DL + SL \pm WL)$ (uplift)

LC 3: 0,9·DL ± 1,5·WL

 $b = h \cdot \cos \beta$

Verifications

- tilting
- dragging

• uplift

© Dr. Zapfe GmbH 2011

4. Decision criteria for substructure selection

Material (dimensioning acc. to basic material standards)

Aluminum

- + low selfweight
- + shaping by extrusion process
- + easy to install (tolerance equalization)
- + remaining value
- floating material prices
- low youngs modulus

Steel

- + availability / well-proven solutions
- corrosion protection
- mounting effort
- high weight

Timber

- + cost-saving for self-mounting
- durability
- contour accuracy

5. Foundation concepts

Pile-driven posts

- •Pull-out capacity (vertical)
- Horizontal stiffness
- •Bending moment in posts
- •Drilling in case of rocks
- •Chemical composition (corrosion)

Screw foundations

- •Pull-out capacity
- •No horizontal stiffness
- •Axial forces
- •Drilling in case of rocks
- •Chemical composition (corrosion)

Concrete foundation

- •Pressure stability of the soil
- •Sensitivity of the top soil towards water
- •Aggressive soil

Soil pressure in case of single bearing structures

6. Mounting progress of different foundation concepts

© Dr. Zapfe GmbH 2011

7. Conclusions

- Design calculations according to national standards
- Safety standards have to be verified for
 - Authorities
 - Insurance
 - Banking
 - The suitable system depends on soil contitions
 - Ram systems can be mounted significant faster
 - Target: Minimum BOS costs
 - Material costs
 - Mounting effort
 - Maintenance over life time

Thanks for your attention